

PHAR:8263 IP: Infectious Diseases

Assessment of Renal Function for TDM

Ronald A. Herman, Ph.D.

Department of Pharmaceutical Care

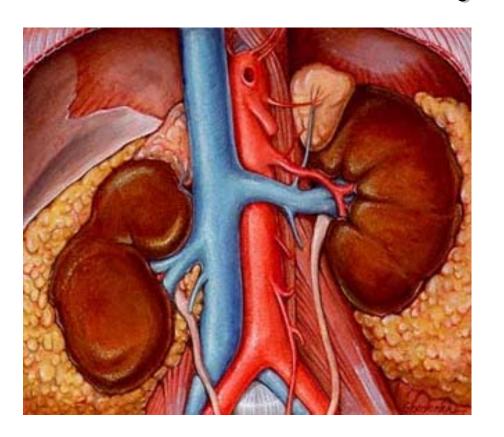
Raz

Objectives

- Know the most commonly used methods of estimating creatinine clearance for all age groups.
- **Describe how the GFR and CrCl relate to one another as measures of renal function.**

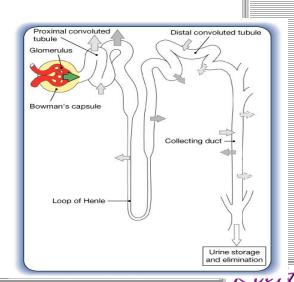
Objectives

- **Understand the controversy about actual body weight or lean body weight in the Cockcroft Gault equation.**
- **Know how to normalize creatinine clearance estimations.**
- Use CrCl estimations to calculate PK parameters


Raz

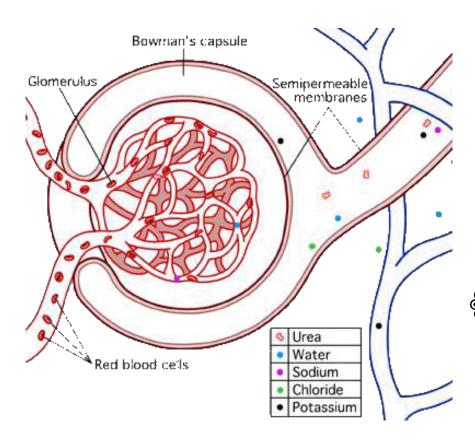
Introduction

Functions of the kidney



Functions of the Urinary System

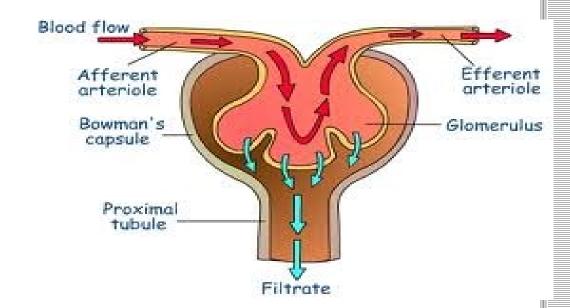
- **Excretion**
 - * The removal of organic waste products from body fluids.
- **Elimination**
 - * The discharge of waste products into the environment.
 - Homeostatic regulation of blood plasma
 - * Regulating blood volume and pressure
 - * Regulating plasma ion concentrations
 - * Stabilizing blood pH
 - *** Conserving nutrients**



Drug Elimination

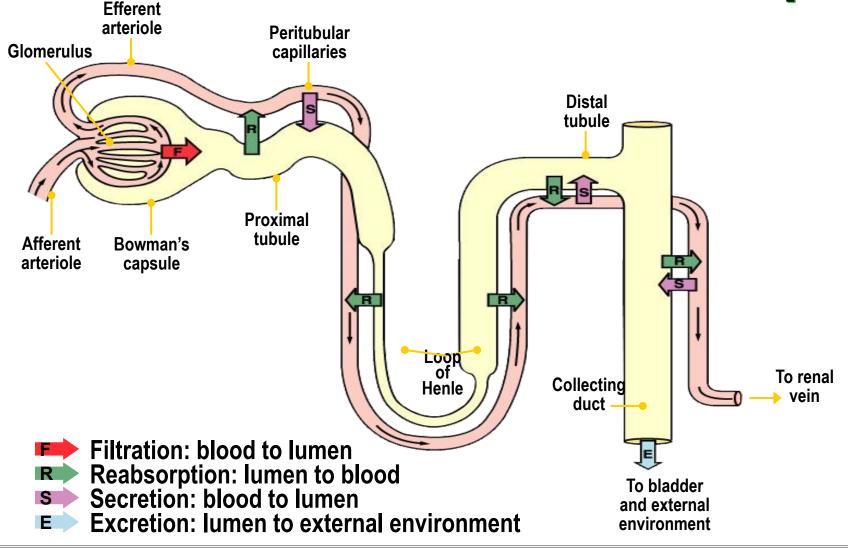
- *** Glomerular Filtration**
 - Major route for elimination of small drug molecules.

- **Active Secretion**
 - *Becomes important large, biotechnology medications.



Glomerular filtration rate (GFR)

- **Amount of filtrate produced** in the kidneys each minute.
- **♥** In normal adults 120-130 ml of fluid is filtered at the glomerulus per minute.
- **⇔** Mol. Wt. > 60,000 daltons are not filtered.
- **⇔** Factors that alter filtration pressure (e.g. blood flow rate, protein binding, etc.) change GFR.



RaH

Renal Function Overview: The Nephron

RaH

Measures of Renal Function

- Glomerular Filtration Rate
 - *** Normal: 90-130 ml/min**
- Methods for measuring GFR are
 - *Too time consuming
 - * Too expensive
 - *The biomarker has some active secretion along with its filtration.

Measures of Renal Function

- **Serum Creatinine**
 - ***Normal: 0.6 1.2 mg/dl**
- **Creatinine Clearance Normal:**
 - *** Males: 97-137 ml/min**
 - *** Females: 88 128 ml/min**
- Blood Urea Nitrogen (BUN)
 - *Normal: 7 20 mg/dl

RAH 10

Evaluation of Kidney Function: GFR

- Serum creatinine is most widely used marker of GFR in clinical practice.
 - * Metabolically inert product of muscle
- **Various factors affect serum creatinine, and thus, the predictive accuracy of GFR**
 - * Muscle mass affects creatinine generation
 - > Age, gender, weight, steroid use
 - * Tubular secretion
 - > Increased secretion when GFR is reduced
 - > Secretion is inhibited by drugs (e.g., cimetidine, trimethoprim)
 - * Variability in laboratory measurement
 - > Intra-individual variability 7-20%

RaH

- * Modification of Diet in Renal Disease
 - Cross-Sectional Study
 - ➤ 1628 Patients 1070 were use to develop regression models to predict GFR and 558 were used to test those models.
 - ➤ GFR was measured with the renal clearance of ¹²⁵I-iothalamate.
 - > Creatinine clearance was also measured.

RAH

♦ Levey et. al. GFR-MDRD (ml/min/1.73 m²)

$$GFR = 175 \cdot SrCr^{-1.154} \cdot Age^{-0.203} \cdot (0.742 + Sex \cdot 0.258) \cdot (1 + 0.21 \cdot Black)$$

[Sex = 1 male, 0 for female, Black = 1 for Black, 0 for other races.]

	Measured	Predicted
GFR	39.8 ml/min/1.73 m ² (100%)	43.4 ml/min/1.73 m ² (109%) MDRD
CrCl	48.6 ml/min/1.73 m ² (119%)	46.2 ml/min/1.73 m ² (116%) C-G

Rah

- **MDRD (CKD-EPI)**
 - *Modification of Diet in Renal Disease with Epidemiology Data
 - Took the previous 1628 Patients and added 6626 more patients that did not have chronic renal failure.
 - -5504 were use to develop regression models to predict GFR and 2750 were used to test those models.

Levey and coworkers: Ann Intern Med 2009;150:604-12

♦ Levey et. al. GFR-MDRD (CKD-EPI) (ml/min/1.73 m²)

$$GFR(CKD-EPI) =$$

$$(144 - (Sex*3))*(1+0.155*Black)*0.993^{Age}*\left(\frac{SrCr}{(0.7+(0.2*Sex))}\right)^{-0.329-SrCrExp}$$

[Sex = 1 male, 0 for female, Black = 1 for Black, 0 for other races. If SrCr > (0.7 + 0.2*Sex)Then SrCrExp = 0.88Else SrCrExp = Sex*0.082

RA7

Creatinine Clearance Estimation

Schwartz et. al. (Neonates: < 2 months)

 $(ml/min/1.73 m^2)$

$$CrCl = \frac{0.45 \cdot Ht}{SrCr}$$

Shull et. al. (Children: 2 months - 16 years)

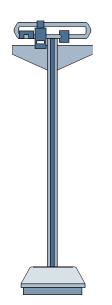
 $(ml/min/1.73 m^2)$

$$CrCl = \frac{(3.5 \cdot Age) + 23.6}{SrCr}$$

Creatinine Clearance Estimation

Cockcroft and Gault: (ml/min)

$$CrCl = \frac{(140 - Age) \cdot Wt}{72 \cdot SrCr} \cdot (0.85 + Sex \cdot 0.15)$$



Weight Adjustments


```
IBW (males) = 50 Kg + 2.3 Kg/inch over 5 feet
```

- AdjWT = (ActBW IBW)*(0.4) + IBW
 - > If ActBW is > 30% over IBW DWT
 - > If BMI ≥ 25 Kg/m² CrCl-Wt

Cockroft & Gault: ABW, IBW or AdjWT?

- Original work of C&G used ABW.
- Creatinine is produced entirely by muscles, so there is no ^'d production in obesity.
- **C&G** original work used ABW, but their patients were within 10% of their IBW.
- **Winter and colleagues recommendations:**
 - * If the patient is < IBW, use CrCl-Wt = ABW
 - * If the patient is > IBW and BMI < 25 Kg/m², CrCl-Wt = IBW
 - * If the patient has a BMI \geq 25 Kg/m², CrCl-Wt = AdjWT

$$CrCl (ml/min) = \frac{(140-Age) \cdot CrClWt}{72 \cdot SrCr} \cdot (0.85+Sex \cdot 0.15)$$

Winter et al: Pharmacotherapy

2012;32(7):604-12

Cockcroft and Gault

- Things to remember:
 - * This estimate is patient specific, not normalized.
 - * Use the correct weight.
 - *SrCr values, according to Winter and colleagues, should not be rounded

$$CrCl = \frac{(140 - Age) \cdot Wt}{72 \cdot SrCr} \cdot (0.85 + Sex \cdot 0.15)$$

Reasons for Estimating CrCl

- To know if dosing adjustments are necessary.
- To use the CrCl estimate to estimate the rate of elimination of certain renally excreted drugs.

CrCl Estimations

- Patient specific CrCl (ml/min)
 - *Used to calculate a patient specific rate of elimination (k_e).
- Normalized CrCl (ml/min/1.73 m²)
 - ** To compare CrCl from one person to the next, the CrCl must be normalized to a standard (BSA).

Raz

Creatinine Clearance Estimation

Cockcroft and Gault: (ml/min)

$$CrCl (ml/min) = \frac{(140-Age) \cdot CrClWt}{72 \cdot SrCr} \cdot (0.85+Sex \cdot 0.15)$$

To Normalize: $CrCl \cdot \frac{1.73}{BSA}$

Summary ()

- GFR is the most accurate estimate of renal function, however, therapeutic drug monitoring (at least to date) use population estimates that have been developed with CrCl.
- Therefore, in the clinical situation, we need to estimate renal function based on CrCl.
 - * This estimate is necessary for PK dosage adjustments of drugs where we monitor serum concentrations.
 - * However, it is also necessary to make dosage adjustments to many other drugs where we do not monitor serum concentrations.
- Therefore, we need to be able to quickly and accurately estimate CrCl in the clinical setting.

